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Nonlocal thermoelectric detection of interaction and correlations in edge states
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Nonlocal thermoelectricity is proposed as a direct probe of interactions, nonthermal states, and the effect
of correlations in the nonequilibrium heat transport between 1D quantum channels. In copropagating quantum
Hall edge states contacted at different temperatures, the nonlocal thermoelectrical response is only expected if the
electron-electron interaction mediates the heat exchange directly measuring the interaction strength. Considering
the low-energy limit of zero-range interactions, we analytically solve the charge and energy currents of a
nonequilibrium interacting system, determining the universal scaling law in terms of an interaction-dependent
energy-relaxation length. Further, a setup with two controllable quantum point contacts allows thermoelectricity
to monitor the thermalization of an interacting system as well as the fundamental role of cross-correlations in
the heat exchange at intermediate length scales.
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Introduction. The thermoelectric response of nanosystems
[1] provides a unique tool to probe quantum phenomena such
as electron entanglement [2–4], superconducting [5–7] and
topological properties [8–12], entropy [13], photon-assisted
tunneling [14], or the chirality of quantum Hall (QH) states
[15–17]. The direct conversion of temperature differences into
measurable electrical quantities enables the exploration of
heat exchange in quantum-coherent systems far from equi-
librium [18,19]. Multiterminal configurations allow for a
separation of heat-injecting and charge-propagating channels
[20–22].

Copropagating QH edge channels (ECs) can be contacted
electrically separately [23,24], thus allowing for precise elec-
trical manipulation. Electron-electron (e-e) interactions have
been investigated via the energy relaxation from nonthermal
and non-Gaussian states injected either by a quantum point
contact (QPC) [25] or as hot electrons [26,27]. However, their
detection is challenging [28–34] and the results difficult to
analyze [35–37]. Moreover, thermal probes have been used
to measure quantized thermal conductances with edge states
[38], to address the nature of edge states [39–43], to explore
equilibration mechanisms [44,45] and to image thermal decay
[46,47]. In this Letter, we suggest the nonlocal thermoelectric
QH effect to probe nonequilibrium heat exchange mediated
by e-e interaction in one dimensional (1D) electron gases,
which can be computed analytically. A thermocurrent is gen-
erated when an energy-dependent junction connects terminals
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at different temperatures [17]. Hereafter, the hot terminal
at temperature T+ injects electrons into the inner channel,
while the outer channel connects with transmission probabil-
ity T (E ) two terminals with identical temperatures T− < T+
(see Fig. 1). When all terminals are grounded, the nonlocal
thermoelectric response of the two separate channels is hence
zero, unless they exchange heat via Coulomb interactions
[48,49]. Then a thermocurrent

I = −
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dET (E )[ feq(E , T−) − f−(x, E )], (1)

T (E)

λ

T− T+

T−Tp

1 2

3p

x

0

0.2

−4 0 4

I
[e
k
B
T
+
/
h
]

(E0−μ)/kBT+

x̃ :
0.1
1
2
5

0

1

−2 0 2

f
•(
E
)

(E−μ)/kBT+

)b()a(

FIG. 1. QH detection setup. The interaction of the upper ECs
along the distance x before a scatterer of transmission probability
T (E ) enables a thermoelectric response between terminals 1 and
3, both at temperature T−, when terminal 2 injects into the inner
channel electrons at a temperature T+ �= T−. Inset (a) shows the
thermoelectric current for interacting regions of different lengths
x̃ = x/x+

K with x+
K = h̄vF /[π (1−K )kBT+] and T− = 0.5T+, when

T (E ) = �(E−E0) (e.g., a QPC), and (b) the distribution of the
different channels before [in red (+) and blue (−)] and after [orange
(−)] the interacting region, as indicated by coloured dots on the main
scheme, with x = 2x+

K and T− = 10−3T+. The coupling λ to a probe
terminal p can be used to inject thermalized electrons.
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between terminals 1 and 3 pinpoints the presence of e-e in-
teractions in the region of length x (we set e = h̄ = kB = 1).
The thermocurrent depends on the difference between the
nonequilibrium distribution of the outer channel f−(x, E )
after the interacting region, and the equilibrium Fermi dis-
tribution feq(E , T−) of terminal 1 [50,51]. The longer x, the
larger the generated current, see Fig. 1(a) for the case of a QPC
scatterer, as expected. The deviation of f−(x, E ) [plotted in
Fig. 1(b)] from an equilibrium distribution can be interpreted
as an overheating effect that can be eventually compared with
the equilibrium distribution of a probe with an effective tem-
perature Tp. We describe how 1D electronic channels initially
at different temperatures restore thermal equilibrium through
e-e interactions using the nonlocal thermoelectric response as
a detector. The analysis is done in the zero-range interaction
limit, valid in the low-energy regime with integrable physics.
Our device uses the chiral nature of ECs to convert the
time evolution into a space evolution, allowing us to identify
the interaction-dependent length scale over which Tomonaga-
Luttinger (TL) liquids [52,53] relax thermal gradients. Finally,
we use the thermoelectric signature to underline the role of the
cross-correlations in thermal relaxation.

Interacting channels. We consider copropagating edge
states of a QH fluid filling the lowest Landau level [36]
at ν=2, which interact long enough to reveal the e-e in-
teractions [24]. Using bosonization [54,55], 1D ECs can be
described in terms of bosonic phase fields φ±(x′, t ). Assuming
that zero-range e-e interactions between the two channels
(α, β = ±) are restricted to a finite region of length x, the
equations of motion (EoM) for 0 � x′ � x become ∂tφα

+ ∑
β vF uαβ∂x′φβ = 0, where vF is the Fermi velocity. The

density-density zero-range interaction, uαβ = δαβ (1 + u4) +
(1 − δαβ )u2, describes intra- (u4) or inter- (u2) channel
terms [24,56]. Using the current operators at x = 0, Ĵα (t ) ≡
−∂tφα (0, t )/(2π ), as boundary conditions [25,55], the EoM
are analytically solved by introducing charge and dipole
modes φc/n(x, t ) = [φ+(x, t ) ± φ−(x, t )]/

√
2, chiral coprop-

agating fields with velocities vc/n = vF (1 + u4 ± u2). We
assume u4 = u2, so vn = vcK = vF with K ≡ 1/(1 + u4 +
u2) [57]. The normal modes chirality, φσ (x, t ) = φσ (0, t − t x

σ )
with t x

σ = x/vσ and σ = c,n connects the phase-field oper-
ators with the boundary conditions such that the channel
current operators j±(x, ω) = 1

2

∑
α=±(eiωt x

c ± αeiωt x
n )Ĵα (ω).

We used the linearity of the theory with the Fourier repre-
sentation f (ω) = ∫

dteiωt f (t ). Correlations between the two
EC induced by e-e interactions at a given position x can be
inspected by looking at the noise spectral density, Sαβ

x (ω) =
δ(ω + ω′)〈 jα (x, ω) jβ (x, ω′)〉. Note that the δ function in the
right-hand side is due to the linearity of the theory stating that
bosonic modes at different energies are independent quanti-
ties. In general, e-e interactions influence both finite auto-
Sαα

x′ (ω) and cross-correlations Sαβ

x′ (ω) (with α �= β) at any
point x′, which can be expressed in terms of the boundary
correlators Sαβ

0 (ω) = 〈Ĵα (ω)Ĵβ (−ω)〉,

Sαα
x (ω) = S̄αα

0 (ω) + cos(ωδt x )

2
δSαα

0 (ω),

Sαᾱ
x (ω) = − i

2
sin(ωδt x )δSαα

0 (ω),

(2)

where S̄αβ
x (ω) ≡ (Sαβ

x + Sᾱβ̄
x )/2, δSαβ

x ≡ Sαβ
x − Sᾱβ̄

x , with
ᾱ = −α, and where δt x = t x

n − t x
c = x(1 − K )/vF depends

on the interaction strength 0 < K � 1. The unsymmetrized
(emission) noise spectral density for the noninteracting leads
at temperature Tα is Sαα

0 (ω) = ω[1 − e−ω/Tα ]−1e−ω/ωc , with
the high-energy cut-off ωc [25]. However, finite cross-
correlations Sαᾱ

x (ω) develop due to e-e interactions, see
Eq. (2), which are absent for independent channels. Notably
the cross-correlators satisfy the symmetry Sαᾱ

x (ω) = Sᾱα
x (ω)∗

and are finite only when S++
0 (ω) �= S−−

0 (ω), such as in
nonequilibrium for T+ �= T−. The correlation effects and the
oscillating behavior with x or ω in Eq. (2) are potentially
measurable and are a signature of a nonequilibrium situation
with the presence of e-e interactions K < 1 (see the Supple-
mental Material (SM) [58]). Further, the oscillating period
in position (frequency) for fixed frequency (position) mea-
sures the interaction strength. In the following, we show two
different configurations in which the role of auto and cross-
correlations, and the effects of e-e interactions, can be directly
probed by the thermoelectrical response. This model is realis-
tic for experimental realizations [24] operating at sub-Kelvin
temperatures as usually realized for recent QH thermal exper-
iments [15,16,38,42]. For T+ ≈ 500 mK and T− ≈ 250 mK
we expect a measurable thermoelectric current of a few nA
with x+

K ≈ 500nm/(1 − K ) for vF ≈ 105m/s, much smaller
that the typical length where disorder effect appears [49].

Energy exchange and effective temperature. When the two
channels are out-of-equilibrium, such that T+ �= T−, it is inter-
esting to investigate how the energy transfer JE between the
two EC depends on the interaction K and the length x of the
interacting zone. Since direct energy exchange measurements
are challenging, here we propose to use nonlocal thermo-
electricity to measure the EC heat transfer. In particular, we
assume that, using QPCs, we can completely separate the
ECs after the interaction and analyze them separately (see
the SM [58]). In the limit of a long interacting zone x → ∞,
the energy exchanged becomes independent of distance and
interaction strength JE ∝ T 2

+ − T 2
− . This is consistent with

the expectation that after a long distance, the two inter-
acting ECs equilibrate towards the equilibrium temperature

T eq =
√

T 2−+T 2+ reached by two Fermi liquids with different

temperatures put in contact. For an isolated EC for x′ > x,
one can similarly define an effective temperature T eff

± (x′) =√
T 2± ∓ 12

π
JE(x′), which corresponds to the temperature of a

Fermi liquid thermalized with the EC even for non-Fermi
liquid electronic distributions (see the SM [58]). For the ECs
we find

T eff
± (x)

T+
=

√
1

2
∓ 3/2

sinh2 x̃
+ 
2

2

[
1 ± 3

sinh2(
x̃)

]
, (3)

where x̃ ≡ x/x+
K is the rescaled interacting length, and 
 ≡

T−/T+ represents the initial temperature unbalance between
the channels. The interaction-dependent effective length x+

K =
h̄vF /[π (1−K )kBT+] is the typical distance over which the
exchange of energy happens between the hot T+ and the cold
(T− → 0) channels. In Fig. 2 we show the scaling of T eff

± as a
function of x̃ for different ratios 
. Increasing the interaction
length x � x+

K the effective temperature equilibrates to the
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FIG. 2. Effective temperature T eff
α /T+ of the α=± channels vs

the rescaled position x/x+
K for different 
 = T−/T+.

intermediate value of Fermi liquids, T eq/T+ =
√

(1+
2)/2.
In the limit 
 → 0, Eq. (3) tends to a universal curve leading
to a universal formula for the thermal conductance Gth(x) ≈
JE (x)/δT assuming initially a small temperature difference
δT between the ECs (see the SM [58]). Note that the x de-
pendence can be explored by modifying the length of the QH
edges using electrostatic gates [59]. Alternatively, one can fix
x and change T+.

Circuit theory for correlators. The presence of e-e
interactions and nonequilibrium can generate finite cross-
correlations between the ECs. In particular, using the locality
(due to zero-range assumption) and linearity of the theory (see
the SM [58]) we can write any correlator Sαβ

y+x(ω) as a chain
rule via correlators Sαβ

x (ω) at intermediate position x,

Sαβ
y+x(ω) = S̄αβ

x + cos(ωδt y)

2
δSαβ

x + i
sin(ωδt y)

2
δSαβ̄

x , (4)

with the symmetric and antisymmetric combinations of
boundary condition spectral densities. This generalizes Eq. (2)
to nonequilibrium situations and potentially non-Gaussian
boundary conditions. However, the chain rule is still valid
to effectively describe a region with long-range interac-
tion between ECs, as long as the correlators are analyzed
in zero-range interacting regions. This assumption is not
particularly demanding: indeed usually, two edge channels
need to be separated by gating [23] (with e.g., a QPC)
to contact them separately and, in such cases, the zero-
range assumption is typically recovered due to screening
effects. The correlators Sαβ

x (ω) in a zero-range region con-
tain all the required information about averaged quantities
(e.g., charge/energy currents) and the noise fluctuations (e.g.,
second-order current-current correlators) in the system. This
is a sort of generalized nonequilibrium circuit theory. One
could easily combine regions with different strengths of in-
teractions. In Eq. (4) the influence cross(auto)-correlators on
the later-time auto(cross)-correlators appears via the term pro-
portional to i sin(ωδt y). This shows that the cross-correlations
generated in an interacting system out-of-equilibrium cannot
be ignored to investigate the energy flow. Below we introduce
an experimental setup able to eventually switch on and off the
cross-correlation contributions in a controlled way.

FIG. 3. (a) Nonequilibrium- and cross-correlation-sensitive cir-
cuit. Channels at the upper and lower edge are uncoupled for κ=0.
Switching on the connection κ=1, inner electrons from terminal 2 are
replaced by others from 2’. (b) Nonequilibrium electron distribution
function for the cold EC as a function of energy E/T+ for different
cases: fully interacting (κ = 0), and with cross-correlation reset-
ting (κ = 1), compared with the equilibrium Fermi distribution with
temperature T eff

− (y+x) (black). Different panels refer to different po-
sitions y/x+

K , with 
=10−3. (c) Current for the correspondingly above
cases (κ = 0) when the scatterer is a narrow resonance, T (E ) ≈
�δ(E − Er ).

Nonequilibrium electron distributions. The fundamen-
tal quantity in ECs is the electron distribution function
fα (y + x, t ) ≡ 〈ψ†

α (y+x, t )ψα (y+x, 0)〉 where, in bosoniza-
tion, the operators are expressed in terms of phase fields
since ψα (x, t ) ∝ e−iφα (x,t ). However, in order to address the
role of cross-correlations in the energy exchange mediated by
the interaction we investigate the thermoelectricity in a spe-
cific setup, see Fig. 3(a). We consider two EC separately
contacted with Ohmic contacts at different temperatures Tα at
x < 0. They start to interact from x � 0, and we measure the
thermoelectric response induced by the outer EC at the scat-
terer T (E ) located at y + x > 0. At an intermediate position x
one can imagine to selectively open, κ = 1, (close, κ = 0) the
QPC2, switching on (off) the cross-correlation [60].

The real-time distribution function is thus given by fα (y +
x, t ) ∝ eigα (y+x,t ) with the exponent (see the SM [58])

gα (y + x, t ) =
∫ +∞

−∞
dω[e−iωt − 1]

Sαα
y+x(ω)

ω2
. (5)

The energy-dependent distribution function of the cold EC
f−(y + x, E ) is plotted in Fig. 3(b) in the limiting case

 → 0. Different curves refer to different distribution func-
tions: orange for the full-interacting case, purple without
cross-correlations at x, i.e., Sαᾱ

x (ω) = 0. As a reference,
we also plot the Fermi function evaluated with the same
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effective temperature T eff
− (y + x), see black-solid line in

Fig. 3(b). The electron distribution differences are mainly
due to the power-law behavior around μ = 0 typical of a
TL liquid. However, one immediately notes the nontrivial
role of cross-correlations: they affect the electron distribu-
tions mainly at intermediate distances y ∼ x+

K . Indeed, at short
distances the term i sin[ωx(1 − K )/vF ] suppresses their con-
tribution. For long distances y � x+

K , f−(y + x, E ) with and
without cross-correlations become equal, but still slightly dif-
ferent from the equilibrium Fermi distribution function. This
is a consequence of the constraints dictated by integrability.
However, the system spontaneously seems to develop a Fermi-
like behavior even if it slightly differs from Fermi distribution
at μ, a clear hallmark of the e-e interaction [31,61,62].

Thermoelectric currents. Equation (1) gives a direct way to
detect the deviation of the cold EC (−) from the equilibrium
distribution via the thermoelectric current. For this, we use a
narrow-band spectrometer [61,62] such as a resonant antidot
[63] with transmission T (E ) ≈ �δ(E−Er ), which has the
dual property of being an efficient thermoelectric [64] compo-
nent sensitive to the features near the tunable resonant energy
Er , i.e., I = −e�[ feq(Er, T−) − f−(x, Er )], see Fig. 3(c). As
expected the current increases with the length of the interac-
tion distance y+x, since more energy is transferred between
hot and cold ECs. Clearly, the thermocurrent saturates when
y � x+

K (not shown).
The thermoelectric response also gives a DC measure of

the effect of cross-correlations in the energy exchange by
using the slightly more complex setup of Fig. 3(a). The in-
teraction effects are measured by tuning QPC1, which couples
the outer channel to a probe terminal with a transmission prob-
ability λ. This way we can directly compare the thermoelectric
current generated from the noninteracting Fermi distribution
of the probe (λ=1) with the distribution coming from the
interaction region (λ=0). This is represented by the difference
of thermocurrents δIλ = I (λ=0) − I (λ=1). The comparison
is particularly meaningful as the probe has the same tempera-
ture of the cold EC channel entering, i.e., T eff

+ (x + y) [65].
The effect of cross-correlations is detected by acting on

QPC2, which couples the upper and lower inner channels
with transition probability κ . In this case, it is important to
note that there are copies of terminals 2 and 3 that we call
2’ and 3’, which symmetrically operate on the ECs of the
other side of the Hall bar. For κ = 0, the two upper channels
interact along a distance x + y as discussed above. Switching
on the connection, κ = 1, one replaces the inner channel with
another one having nominally the same auto- but no cross-
correlations at x (as they could not interact before). The effect
of cross-correlations in the thermocurrent is represented by
the difference δIκ = I (κ=0) − I (κ=1).

Interaction and correlation effects. We firstly consider to
control λ of the QPC1 keeping fixed the QPC2 (κ = 0). This
is shown in Figs. 4(a) and 4(b) for different initial reservoir
temperatures 
 = T−/T+ varying the resonance energy Er . A
finite δIλ means that the electronic distribution emerging from
the interacting zone is different from a Fermi distribution.
Thermoelectricity is sensitive to this difference, especially in
the energy window around μ. The thermocurrent generally
grows with the increasing temperature difference. Note that
δIλ is an odd function around μ = 0 and it is maximal when

FIG. 4. (a) Difference of the currents with and without the
probe, δIλ, for x̃=300 with an antidot-like scatterer with T (E ) =
�δ(E−Er ), as a function of the resonance energy (Er − μ)/kBT+
and 
. (b) Cuts of the previous for fixed values of 
 marked by the
corresponding color arrows in panel (a). (c) δIλ for different values
of x̃ and 
 = 10−3. (d) δIκ when resetting cross-correlations at a
distance x̃, measured after the distance ỹ = y/x+

K , for 
 = 10−3 and
λ = 0.

|Er − μ| ∼ kBT+, roughly the energy scale where the two-
electron distributions are maximally different [66]. However,
for the long interaction length limit y + x � x+

K , the inter-
acting electron distribution becomes Fermi like and δIλ gets
reduced, see Fig. 4(c).

If instead, we control κ of the QPC2 keeping QPC1 fixed
at λ = 0, we can observe some intriguing effects for cross-
correlations. In Fig. 4(d) we consider the case x = x+

K for
different distances y, finding a nonmonotonous behavior in y.
For y � x+

K the cross-correlations do not have enough space
to develop an influence on the auto-correlations due to the
sine prefactor of Eq. (4), so we expect δIκ ≈ 0. At the same
time for y � x+

K we also expect δIκ → 0 because the result-
ing interacting electron distribution is Fermi like [see also
Fig. 3(b)] and the cross-correlation does not play any major
role in this limit. The role of the correlations in the energy
flow between the two channels is maximal for y≈x+

K and for
|Er−μ| ∼ kBT+, see Fig. 4(d). Using the realistic sub-Kelvin
temperature gradients assumed before we expect a measurable
DC current differences δIi of the order of 0.1 nA.

Conclusions. We propose the nonlocal thermoelectric
response as a signature of the presence of interacting nonequi-
librium states in copropagating QH channels. We identify the
characteristic length over which energy is exchanged due to
the interaction, which manifests in the generated thermocur-
rent and gives a direct measure of the interaction strength.
Controlling the connections between the different edge chan-
nels, the importance of cross-correlations in the energy flow
of interacting nonequilibrium systems is quantified in a purely
DC setup, opening ways to thermoelectricity-based quantum
sensing. Our results introduce a circuit theory that can be ex-
tended to configurations with other kinds of edge states (e.g.,
in topological insulators), or with long-range interactions.
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